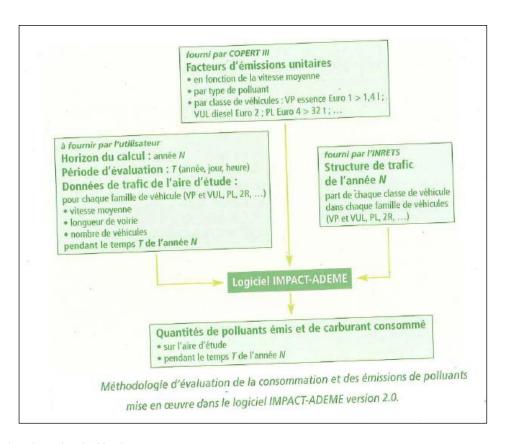
Etude d'impact du trafic induit par le site

1) Présentation du logiciel


Le logiciel utilisé pour cette étude est le logiciel IMPACT ADEME Version 2.0 concernant les émissions de polluants et la consommation liées à la circulation routière.

Cet outil utilise:

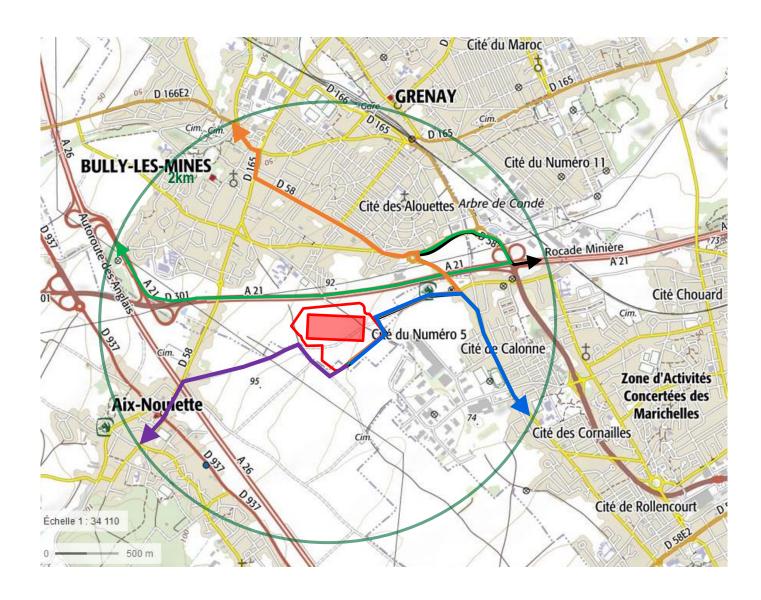
- ➤ Une base de données d'émissions unitaires et de consommation pour chaque catégorie de véhicules du parc français susceptibles d'être présents sur la voirie aujourd'hui et dans les années à venir.
- Un jeu de données sur la structure annuelle du parc français de véhicules (nombre et kilométrage moyen) de 1995 à 2025.

Ces deux ensembles permettent, en pondérant les émissions de chaque catégorie de véhicules par la moyenne de son taux de présence dans la circulation, de calculer les émissions unitaires moyennes à un horizon donné.

Le logiciel IMPACT ADEME combine trois jeux de données selon le schéma ci-dessous pour calculer les émissions liées à la circulation.

2) Présentation du cadre de l'étude

Le site objet du présent dossier se trouve sur la commune de Bully les Mines, dans l'extension du Parc d'Activités de l'Alouette implanté en bordure d'autoroute A21.

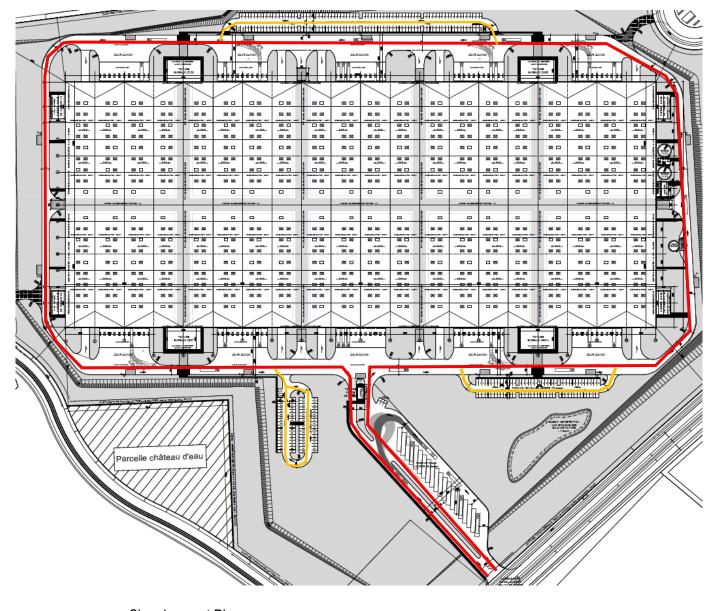

Le site est quant à lui directement relié à la route de desserte de la zone d'activités, reliées elle-même à la D58 puis l'A21. L'A21 est accessible sans traverser de zone d'habitation.

Nous baserons notre étude sur un rayon de 2 km autour du site, correspondant au rayon d'affichage.

L'objet de cette étude est de comparer les différentes émissions de polluant avant et après la construction du bâtiment.

Nous tiendrons donc compte de la circulation des poids-lourds (PL) et des véhicules légers (VL) sur la route de desserte, la D58, l'A21 et la rue Jules Ferry.

Ce rayon englobe environ 12 000 habitants.


Trafic actuel:

D'après les comptages routiers diffusés par la Direction Régionale de l'Environnement, de l'Aménagement et du Logement des Hauts de France, les valeurs de trafics sont les suivantes :

	Trafic routier (Moyenne journalière annuelle)	Poids Lourds	Année de comptage
A21	49 006	4 117	2015
D58	37 694	1 170	2015
A26 Nord	26 600	3 900	2015
A26 Sud	18 200	3 100	2015
Rue Jules ferry	2 000*	-	-

^{*} Estimé

Sur le site en lui-même, les VL et les PL devront faire le tour du bâtiment, ils devront parcourir 1,5 km.

Cheminement PL

Cheminement particulier pour les VL

Trafic généré et trajets effectués :

Il est prévu avec la construction du nouveau bâtiment, un trafic de 100 PL et 300 VL par jour.

Nous considérerons que pour chaque type de véhicules (VL et PL), le trafic est réparti de la manière suivante :

- > 100 % des véhicules emprunteront la route de desserte sur 1, 4 km,
- > 100 % des PL emprunteront la D58 sur 1 km,
- > 50 % des PL emprunteront l'A21 vers Ouest sur 3,6 km,
- > 50 % des PL emprunteront l'A21 vers Est sur 350 m,
- > 1/3 des VL emprunteront la d58 vers le Nord sur 2 km,
- > 1/3 des VL emprunteront la D58 vers le Sud-ouest sur 300 m,
- > 1/3 des VL emprunteront la rue Jules Ferry vers le Sud sur 1 km.

Nous avons décomposé les entrées et sorties de site en différents tronçons et indiqué le nombre de passage générés par l'activité du nouvel établissement :

	Axes	Distance (km)	Vitesse autorisée	Vitesse moyenne (km/h)		Répartition		Nb passages		Trafic routier TMJA	
		,	(km/h)	PL	VL	Mvt PL	Mvt VL	PL/j	VL/j	(VL+PL)/J	
	Desserte	1,4	50	50	50	50 %	1	100	1	1	
Trajet 1	D58	1,0	70	50	70	50 %	1	100	1	37 694	
	A21	0,35	130	80	130	50 %	1	100	1	49 006	
Traint 0	Desserte	1,4	50	50	50	1	33 %	1	200	1	
Trajet 2	D58	2,0	70	50	70	1	33 %	1	200	37 694	
	Desserte	1,4	50	50	50	50 %	/	100	1	1	
Trajet 3	D58	1,0	70	50	70	50 %	1	100	1	37 694	
	A21	3,6	130	80	130	50 %	1	100	1	49 006	
Traint 1	Desserte	1,4	50	50	50	1	33 %	/	200	1	
Trajet 4	D58	0,3	70	50	70	1	33 %	1	200	37 694	
	Desserte	1,4	50	50	50	1	33 %	1	200	1	
Trajet 5	Rue Jules Ferry	1,0	50	50	50	1	33 %	1	200	~2 000	
Cito	Site PL	1,5	30	10	30	100 %	1	100	1	1	
Site	Site VL	1,5	30	10	30	1	100 %	1	200	1	

3) Choix des polluants

Pour le choix des polluants, nous nous sommes basés sur le rapport de l'ANSES du 12 juillet 2012 relatif à la sélection des polluants à prendre en compte dans les évaluations des risques sanitaires réalisés dans le cadre des études d'impact des infrastructures routières

Les polluants retenus sont donc :

Le dioxyde de carbone : Ce n'est pas un polluant au sens strict. Mais c'est un gaz à effet de serre, d'où sa prise en compte dans les polluants atmosphériques.

Le monoxyde de carbone: Il peut provoquer la mort en cas d'intoxication aiguë. Il résulte essentiellement de la combustion dans les véhicules à moteur à explosion. Il représente 4 à 6 % des gaz d'échappement d'un véhicule. Une intoxication chronique par ce polluant peut être responsable de nombreux troubles tels que des céphalées, des vertiges, des asthénies ou des troubles sensoriels. De plus, il favorise l'accumulation de lipides dans le sang susceptibles de provoquer des thromboses des artères coronaires.

Les oxydes d'azote : Ils résultent principalement de la réaction de l'oxygène et de l'azote de l'air sous l'effet de la température de combustion. Ils proviennent aussi de la combustion de produits azotés.

Ils sont produits:

- > Pour les trois quarts par la circulation automobile,
- > Pour un quart par des sources fixes de combustion.

A fortes doses, ils provoquent des lésions respiratoires. A moindres doses, chez les fumeurs, ces polluants sont responsables de maladies respiratoires chroniques.

Le dioxyde de soufre : C'est le polluant le plus caractéristique des agglomérations industrialisées.

Les émissions de dioxyde de soufre proviennent :

- > Dans leur grande majorité, de la combustion des fuels et des combustibles solides,
- > Dans une proportion d'environ 10 % des rejets des moteurs Diesel.

En brûlant, le soufre contenu dans les combustibles (dans une proportion de 1 à 5 %) est oxydé par l'oxygène de l'air pour former du dioxyde de soufre.

Ce polluant est le principal responsable des affections respiratoires en milieu urbain en hiver. Il augmente la fréquence des crises chez les asthmatiques.

Les émissions liées à l'échappement des véhicules (1,3-butadiène, benzène, formaldéhyde, acétaldéhyde, cadmium, chrome, Nickel, Plomb). Ces molécules présentent un effet cancérigène en cas d'exposition chronique par inhalation

4) <u>Etude</u> On calcule les émissions générées :

- 1/ par la circulation générée par le site dans un rayon de 2 km au niveau des tronçons désignés ci-dessus. 2/ par le trafic existant dans un périmètre de 2 km autour du site.

Trafic normal	CO (g/j)	Nox (g/j)	Particules (g/j)	CO ₂ (kg/j)	SO ₂ (g/j)	Pb (g/j)	Cadmium (g/j)	Chrome (g/j)	Nickel (g/j)	CH ₄ (g/j)	N₂O (g/j)	NH₃ (g/j)	HAP (g/j)	benzène (g/j)	Formaldéhyde (g/j)	1,3-butadiène (g/j)	Acétaldéhyde (g/j)
Desserte 1,4 km	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
D58 3,3 km	27912,05	32095,09	1605,89	15557515	396,09	3,64	0,05	0,25	0,35	559,43	2949,47	3519,47	3,58	77,61	301,30	49,80	161,50
A21 3,95 km	213143,91	105195,64	10674,32	41803696	1069,76	10	0,13	0,67	0,94	2055,13	5526,96	5200,59	5,54	159,78	822,20	151,70	442,50
Rue JF 1km	901,48	509,12	30,48	253180,84	6,46	0,08	0	0	0,01	6,79	68,57	41,21	0,06	1,88	7,10	0,68	3,80
Trafic engendré par le site																	
Desserte 1,4 km	499,9	626,48	20,26	287690,44	7,34	0,03	0	0	0,01	11,06	34,9	17,92	0,03	0,83	7,60	2,10	4,10
D58 1km 100%PL	86,63	294,75	5,33	129538,92	3,3	0	0	0	0	5,87	4,36	0,44	0,01	0,03	3,30	1,30	1,80
D58 2,3 km 100% VL	300,43	302,32	17,21	149493,53	3,8	0,04	0	0	0	5,11	32,81	40,2	0,04	0,88	2,70	0,28	1,50
A21 3,95km 50% PL	138,4	503,7	7,58	228687,03	5,83	0	0	0	0,01	6,92	8,61	0,86	0,01	0,05	5,90	2,30	3,20
Rue JF 1km 33% VL	90,15	50,91	3,05	25318,08	0,65	0,01	0	0	0	0,68	6,86	4,12	0,01	0,19	0,71	0,07	0,38
Site VL et PL (1 500 m)	630,98	709,49	24,74	273414,56	6,98	0,03	0	0	0,01	6,2	18,7	9,6	0,02	0,74	14,10	4,70	7,70
Augmentation (%) des émissions liée à l'exploitation du site dans un rayon de 2 km	0,7%	1,8%	0,6%	1,9%	1,9%	0,8%	0,0%	0,0%	2,3%	1,4%	1,3%	0,8%	1,3%	1,1%	3,1%	5,3%	3,1%

5) Estimation des concentrations de polluants

Dans le rapport de l'ANSES du 12 juillet 2012 relatif à la sélection des polluants à prendre en compte dans les évaluations des risques sanitaires réalisés dans le cadre des études d'impact des infrastructures routières, on trouve des données concernant les concentrations françaises moyennées des polluants réglementés.

Une étude réalisée par Airparif en 2007 à Gentilly a démontré que quel que soit le polluant considéré, les niveaux de pollution baissent lorsque l'on s'éloigne d'un axe de circulation. La diminution la plus rapide et la plus importante est observée dès les premiers mètres. Aussi, compte tenu de l'implantation des habitations autour du site (plus de 100 mètres), nous avons choisi d'utiliser les valeurs « niveau urbain ».

Ces valeurs sont reprises dans le tableau ci-dessous et associées au pourcentage d'augmentation de chaque polluant calculé avec le logiciel ADEME.

Concernant le chrome, la concentration donnée est la concentration totale de chrome. Or, la valeur toxicologique de référence utilisée est relative au chrome hexavalent (chrome VI) uniquement, qui est la forme cancérigène du chrome. L'utilisation de la concentration totale de chrome conduit donc à surestimer le risque.

Dans le cadre d'une étude d'impact pour la réalisation de l'échangeur A4510 au niveau de Lyon, des mesures de concentration de fond ont été effectuées en distinguant le Cr total du CrVI (milieu trafic). Les valeurs obtenues étaient de 8,1 ng/m³ pour le Cr total et 0,11 ng/m³ pour le Cr VI.

A défaut de données génériques, nous nous sommes basés sur ce ratio pour déterminer une concentration initiale en Cr VI.

	Concentration moyenne sur 2007-2009 Milieu : urbain	Augmentation calculé dans notre étude %	Concentration finale	VTR Effets chroniques non cancérigènes (avec seuil)	ERU Effets chroniques cancérigènes (sans seuil) Toujours en µg/m³
CO (mg/m³)	1,1	0,7%	1,11	10 mg/m³ pendant 8h d'exposition	Pas de données
Nox (µg/m³)	29	1,8%	29,53	40 μg/m³ exposition annuelle	Pas de données
Particules 10,0 (µg/m³)	18	0,6%	18,11	20	9,03E-08
CO ₂	Pas de données	1,9%	1	Pas de VTR	Pas de VTR
SO ₂ (µg/m³)	12,9	1,9%	13,15	50	Pas de données
CH ₄	Pas de données	1,4%	1	Pas de VTR	Pas de VTR
N ₂ O	Pas de données	1,3%	1	Pas de VTR	Pas de VTR
Benzène (µg/m³)	1,22	1,1%	1,23	10	6,00E-06
Plomb (ng/m³)	6,5	0,8%	6,55	500	1,20E-05
Cd (ng/m³)	0,2	0,0%	0,20	5	4,20E-03
Cr (ng/m³)	6	0,0%	6,00	100	1,50E-01
Cr VI (ng/m³)	0,08		0,08		
Ni (ng/m³)	2,6	2,3%	2,66	90	3,80E-04
Formaldéhyde (µg/m³)	3	3,1%	3,09	9,84	6,00E-06
1,3 Butadiène (ng/m³)	0,6	5,3%	0,63	2000	1,70E-04
Acétaldéhyde (µg/m³)	1,5	3,1%	1,55	9	2,70E-06

6) Evaluation de l'exposition humaine

La concentration moyenne inhalée correspond à la formule suivante :

CI = Ci x ti x T x F/Tm

Avec:

CI: concentration moyenne inhalée (mg/m³ ou µg/m³)

Ci : concentration de polluant dans l'air inhalé pendant la fraction de temps ti

ti : fraction de temps d'exposition à la concentration Ci pendant une journée

T : durée d'exposition (années)

F: fréquence d'exposition (jours par an)

Tm : période de temps sur laquelle l'exposition est moyennée (jours)

Nous retiendrons les valeurs suivantes :

Riverains

ti = 0,7 (exposition 17h par jour moyenné sur l'année)

T = 40 ans (durée moyenne pour laquelle un individu reste sur un même lieu résidentiel)

F: 365 jours par an

 $Tm : 40 \times 365 = 14600 \text{ jours}$

Travailleurs

ti = 0,33 (exposition 8 heures par jour)

T = 40 ans (durée moyenne d'activité professionnelle)

F : 252 jours par an (nombre moyen de jours ouvrés par an selon l'INSEE)

Tm : $40 \times 252 = 10080$ jours

Cas particulier des effets sans seuil

Tm est assimilé à la durée de vie entière (riverains et travailleurs), prise à 70 ans :

 $Tm : 70 \times 365 = 25 550 \text{ jours}$

• Tableau récapitulatif des données et application à la formule

	Riverains	Travailleurs
ti	0,7	0,33
T	40	40
F	365	252
Tm (seuil)	14 600	10 080
Tm (sans seuil)	25 550	25 550
CI avec seuil	CI = 0,7 Ci	CI = 0,33 Ci
CI sans seuil	CI = 0,38 Ci	CI = 0,13 Ci

7) Calcul du risque

• Effets avec seuil

Pour les effets à seuil, la possibilité de survenue d'un effet toxique est représentée par un indice de risque : IR = C1/VTR

Si cet indice est inférieur à 1, la survenue d'un effet toxique apparait peu probable.

L'IR Global tient compte de la répartition entre travailleurs et non actifs sur la population concernée dans le rayon de 2 km (environ 65 % de travailleurs, données INSEE).

	Ci	CI Riverains (Ci x 0,7)	CI travailleurs (Ci x 0,33)	VTR Effets chroniques non cancérigènes (avec seuil)	IR Riverains	IR Travailleurs	IR Global
CO ₂	1	1	1	Pas de VTR	1	1	1
CH ₄	1	1	1	Pas de VTR	1	1	1
N ₂ O	1	1	1	Pas de VTR	1	1	1
1,3 Butadiène (ng/m³)	0,63	0,4424	0,2086	2000	0,0002	0,0001	0,0001
Cr VI (ng/m³)	0,08	0,0560	0,0264	100	0,0006	0,0003	0,0004
Plomb (ng/m³)	6,55	4,5867	2,1623	500	0,0092	0,0043	0,0060
Ni (ng/m³)	2,66	1,8623	0,8780	90	0,0207	0,0098	0,0136
Cd (ng/m³)	0,20	0,1400	0,0660	5	0,0280	0,0132	0,0184
Cr (ng/m³)	6,00	4,2000	1,9800	100	0,0420	0,0198	0,0275
CO (mg/m³)	1,11	0,7756	0,3656	10 mg/m³ pendant 8h d'exposition	0,0776	0,0366	0,0508
Benzène (µg/m³)	1,23	0,8638	0,4072	10	0,0864	0,0407	0,0566
SO ₂ (µg/m³)	13,15	9,2019	4,3380	50	0,1840	0,0868	0,1206
Acétaldéhyde (µg/m³)	1,55	1,0825	0,5103	9	0,1203	0,0567	0,0788
Formaldéhyde (µg/m³)	3,09	2,1641	1,0202	10	0,2199	0,1037	0,1441
Nox (µg/m³)	29,53	20,6678	9,7434	40	0,5167	0,2436	0,3386
Particules 10 (µg/m³)	18,11	12,6802	5,9778	20	0,6340	0,2989	0,4155

Pour l'ensemble des polluants retenus, l'IR reste inférieur à 1, ce qui signifie que la survenue d'un effet toxique apparaît peu probable.

Il est important de préciser que les valeurs de concentration initiale sont des estimations sur la France et non des mesures réalisées autour des routes concernées.

Aussi, si ces chiffres sont un bon indicateur, ils sont à prendre avec précaution.

• Effets sans seuil

Pour un effet sans seuil, un excès de risque individuel est calculé en multipliant la concentration inhalée par l'excès de risque unitaire.

L'ERI représente la probabilité d'occurrence que la cible a de développer l'effet associé au polluant pendant sa vie, du fait de l'exposition considérée

ERI = C1 x ERU1

On considérera l'ERI par rapport à la limite de 10-5 fixée par le BRGM, au-dessus de laquelle l'excès de risque est considéré comme non acceptable.

L'ERI Global tient compte de la répartition entre travailleurs et non actifs sur la population concernée dans le rayon de 2 km (environ 65 % de travailleurs, données INSEE).

Les résultats sont donnés par ordre croissant (du polluant ayant l'ERI le plus faible au polluant ayant l'ERI le plus élevé).

	Ci	CI Riverains (Ci x 0,38)	CI Travailleurs (Ci x 0,13)	ERU Effets chroniques cancérigènes (sans seuil)	ERI Riverains	ERI Travailleurs	ERI Global
CO (mg/m³)	1,11	0,42	0,14	Pas de données	1	1	1
Nox (µg/m³)	29,53	11,22	3,84	Pas de données	1	1	1
CO ₂	1	1	1	Pas de VTR	1	1	1
SO ₂ (µg/m³)	13,15	5,00	1,71	Pas de données			
CH ₄	1	1	1	Pas de VTR	1	1	1
N ₂ O	1	1	1	Pas de VTR	1	1	1
Plomb (µg/m³)	6,55E-03	2,49E-03	8,52E-04	1,20E-05	2,99E-08	1,02E-08	1,47E-08
1,3 Butadiène (µg/m³)	6,32E-04	2,40E-04	8,22E-05	1,70E-05	4,08E-09	1,40E-09	2,01E-09
Cd (µg/m³)	2,00E-04	7,60E-05	2,60E-05	4,20E-03	3,19E-07	1,09E-07	1,58E-07
Ni (µg/m³)	2,66E-03	1,01E-03	3,46E-04	3,80E-04	3,84E-07	1,31E-07	1,90E-07
Particules (µg/m³)	18,11	6,88	2,35	9,03E-08	6,22E-07	2,13E-07	3,07E-07
Acétaldéhyde (µg/m³)	1,55	0,59	0,20	2,70E-06	1,59E-06	5,43E-07	7,83E-07
Benzène (µg/m³)	1,23	0,47	0,16	6,00E-06	2,81E-06	9,63E-07	1,39E-06
Cr VI (µg/m³)	8,00E-05	3,04E-05	1,04E-05	1,50E-01	4,56E-06	1,56E-06	2,25E-06
Formaldéhyde (µg/m³)	3,09	1,17	0,40	6,00E-06	7,05E-06	2,41E-06	3,48E-06
Cr (µg/m³)	6,00E-03	2,28E-03	7,80E-04	1,50E-01	3,42E-04	1,17E-04	1,69E-04

Comme vu précédemment, l'ERI du Chrome total n'est pas à prendre en compte car trop majorant par rapport à l'ERU du Chrome VI.

Pour l'ensemble des polluants retenus, l'ERI reste de l'ordre 10-5, ce qui signifie que l'excès de risque de développer un cancer est limité.

Il est important de préciser que les valeurs de concentration initiale sont des estimations sur la France et non des mesures réalisées autour des routes concernées.

Aussi, si ces chiffres sont un bon indicateur, ils sont à prendre avec précaution.

8) Conclusion

La population concernée par le rayon d'affichage de 2 km peut être estimée à 12 000 personnes.

Il est important de préciser que les valeurs de concentration initiale sont des estimations sur la France et non des mesures réalisées autour des routes concernées.

Aussi, si ces chiffres sont un bon indicateur, ils sont à prendre avec précaution.

L'évaluation des risques sanitaires du projet ne démontre pas d'impact significatif sur la santé de la population (riverain ou travailleur) environnante.